

edX Discovery Service

Discovery is a service that provides access to consolidated course and program metadata. It does this primarily through a REST API that supports courses, course runs, programs, catalogs, and search.

This guide begins with some background information on the service, then focuses on what you need to know to run and develop for the service.

	Introduction
	Courses and Course Runs

	Catalogs

	Programs

	Data Loading

	Search

	API

	Creating/Accessing the Discovery Service Django Admin

	Quickstart
	Devstack

	Data Loaders

	Search Indexing

	Tests

	Advanced Usage
	Elasticsearch

	Extensions

	Catalogs

	Waffle

	Internationalization

	OAuth2

	Publisher

Introduction

The distribution of edX’s data has grown over time. Any given feature on edx.org may need information from Studio, the LMS, the Ecommerce service, and/or the Drupal marketing site. Discovery is a data aggregator whose job is to collect, consolidate, and provide access to information from these services.

Discovery allows services internal to an Open edX installation to consume a consolidated source of metadata for presentation to users. For example, search on edx.org is provided by Discovery. Discovery also allows external parties to access data about content in an Open edX installation from a single, central location in a secure way that doesn’t impact performance of said installation.

Courses and Course Runs

One of Discovery’s distinguishing features is the way it formalizes the relationship between courses and course runs. For example, course-v1:foo+bar+fall and course-v1:foo+bar+spring identify fall and spring runs of the same course, foo+bar. You can think of courses as collections of course runs. Discovery infers this relationship when collecting data from other services. This hierarchy is the foundation for catalogs and programs, two additional structures provided by Discovery.

Catalogs

Catalogs are dynamic groups of courses. A catalog is defined with an Elasticsearch query. Catalogs are used to give external parties scoped views of edX content. They are also used to implement coupons on the Ecommerce service. For example, a coupon providing a 25% discount on courses from a specific organization would be tied to a catalog identifying those courses.

Programs

Programs are fixed collections of courses whose completion results in the awarding of a credential. Discovery only stores program metadata. For example, Discovery is responsible for keeping track of which courses belong to a program. Other program-related features such as calculating completion and awarding credentials are the responsibilities of separate systems.

Data Loading

Data about courses and course runs is collected from Studio, the LMS, the Ecommerce service, and, for edx.org, the Drupal marketing site. The data loading pipeline used to collect this data can be run with a management command called refresh_course_metadata. edX runs this command several times a day using a Jenkins job. It can be manually run to populate a local environment with data. The data loading framework is designed to make adding additional systems easy.

Search

Discovery uses Elasticsearch to index data about courses, course runs, and programs. Indexing can be run at any time with a management command called update_index. The Discovery API can be used to run search queries against the Elasticsearch index.

API

Access to information about courses, course runs, catalogs, programs, and more is provided by a REST API. For more about the API, use your browser to visit /api-docs hosted by a running Discovery instance.

Creating/Accessing the Discovery Service Django Admin

To access the Django admin panel, you must create a superuser account.
Login to the machine where Discovery is installed, and run the createsuperuser management command.
For example, from the devstack discovery shell:

$ sudo -Hs -u discovery
$ source ~/discovery_env
$ source ~/venvs/discovery/bin/activate
$ cd ~/discovery
$./manage.py createsuperuser --username=USERNAME --email=username@example.com

Now you can access Discovery Django admin at http://yourdomain:18381/admin.
Login with the username and password created above.

Quickstart

This section covers information you need to know to run and develop for the Discovery service.

Devstack

Discovery is part of edX’s Docker-based “devstack.” To run the service locally, follow along with the instructions in the https://github.com/openedx/devstack repo’s README [https://github.com/openedx/devstack/blob/master/README.rst].

Devstack will allow you to run all edX services together. If you only need Discovery, you can run just the services it requires:

$ make dev.up.discovery

Data Loaders

Run the data loaders using the refresh_course_metadata management command to populate a Discovery instance with data. Open a Discovery shell with make discovery-shell, then run:

$./manage.py refresh_course_metadata

By default, refresh_course_metadata loads data for every “partner” in the system. Partners are site tenants, like edx.org. You can view and create tenants using the Django admin at /admin/core/partner/. To load data for a specific tenant:

$./manage.py refresh_course_metadata --partner_code <SHORT CODE HERE>

Search Indexing

Once you’ve loaded data into your Discovery instance, you may want to run Elasticsearch queries against it. Doing so requires indexing the data you’ve loaded, which you can do by running the update_index management command. Open a Discovery shell with make discovery-shell, then run:

$./manage.py update_index --disable-change-limit

Once indexing completes, you can run search queries against the newly created index through the API. For more on this, visit /api-docs.

Tests

Use Docker Compose to run tests just like Travis does. The .travis.yml file is a good reference if you want to run the entire test suite. You’ll notice that a Docker Compose file hosted in this repo is used to run tests instead of the Compose files in the devstack repo. This Compose file defines special test settings and has yet to be consolidated with the Compose files in the devstack repo.

To run specific tests, bring up the services used for testing with make ci_up. To run the tests in course_discovery/apps/api/v1/tests/test_views/test_programs.py:

$ make ci_test

This will install some dependencies in addition to running all tests. After the dependencies have been run (you can interrupt during test running if you like) you can run

$ docker-compose -f .ci/docker-compose-ci.yml exec discovery bash -c 'cd /edx/app/discovery/discovery && .tox/py38-django22/bin/pytest course_discovery/apps/api/v1/tests/test_views/test_programs.py'

When you’re done, take down the services you brought up with make ci_down.

Advanced Usage

This section contains information about advanced usage and operation of the Discovery service.

Elasticsearch

Discovery uses Elasticsearch 1.5 to provide search functionality.

Index Aliasing

Discovery application code uses an index alias [https://www.elastic.co/guide/en/elasticsearch/reference/1.5/indices-aliases.html] to refer to the search index indirectly. For example, the timestamped course_discovery_20160101113005 index may be assigned and referred to by the alias catalog. Using an alias prevents index maintenance (e.g., the indexing and index swapping performed by update_index) from affecting service uptime.

Boosting

Discovery uses Elasticsearch’s function score [https://www.elastic.co/guide/en/elasticsearch/reference/1.5/query-dsl-function-score-query.html] query to modify (“boost”) the relevance score of documents retrieved by search queries. You can find the service’s boosting config at course_discovery/apps/edx_haystack_extensions/elasticsearch_boost_config.py, complete with comments explaining what each part does and how it’s been tuned.

Querying Elasticsearch

In addition to running search queries through the Discovery API, you can make HTTP requests directly to Elasticsearch. This is especially useful if you want to tune how relevance scores are computed. These examples show curl being used from a Discovery shell:

$ curl 'edx.devstack.elasticsearch:9200/_cat/indices?v'
$ curl 'edx.devstack.elasticsearch:9200/catalog/_search?pretty=true' -d '{"explain": true, "query": {YOUR QUERY HERE}}'

The explain [https://www.elastic.co/guide/en/elasticsearch/reference/1.5/search-request-explain.html] parameter tells Elasticsearch to return a detailed breakdown of how relevance scores were calculated. You can get yourself a query to run by intercepting queries made by the application. Add logging to course_discovery/apps/edx_haystack_extensions/backends.py::SimpleQuerySearchBackendMixin::build_search_kwargs that prints the final value of search_kwargs, then run a search query through the API.

Extensions

edX manages two “extension” apps located at course_discovery/apps/edx_catalog_extensions and course_discovery/apps/edx_haystack_extensions as part of Discovery. These apps provide edX-specific customizations. They include data migrations, management commands, and search backends specific to edX. We’d like to move these apps to separate repos at some point in the future to avoid confusion. They live here for now until we can determine what other edX-specific components need to be extracted from the general project.

edx_catalog_extensions is disabled by default. edX developers should add course_discovery.apps.edx_catalog_extensions to INSTALLED_APPS in a private.py settings file.

Catalogs

Catalogs are dynamic groups of courses modeled as access-controlled Elasticsearch queries. You can find the Catalog model in course_discovery/apps/catalogs/models.py.

Permissions

A catalog’s viewers property returns the users who are allowed to view the catalog and the courses within it. These per-object permissions are implemented using django-guardian [https://github.com/django-guardian/django-guardian].

Administration

You can administer catalogs through the LMS at /api-admin/catalogs. You can also modify catalogs using Discovery’s Django admin at /admin/catalogs/. The admin interface provides a preview button you can use to view the list of courses contained in a catalog, as well as the standard django-guardian admin interface for managing user permissions.

Waffle

Discovery uses django-waffle [https://github.com/jsocol/django-waffle] to control the release of new features. This allows us to gradually increase traffic to new features and divert traffic quickly if problems are discovered. Please refer to Waffle’s documentation [https://waffle.readthedocs.io/en/latest/] for an overview of the models you may encounter throughout the codebase.

Internationalization

All user-facing strings should be marked for translation. edX runs this application in English, but our open source users may choose to use another language. Marking strings for translation ensures our users have this choice. Refer to edX’s i18n guidelines [https://edx.readthedocs.io/projects/edx-developer-guide/en/latest/internationalization/i18n.html] for more details.

Updating Translated Strings

Like most edX projects, Discovery uses Transifex to translate content. At edX, the translation process is automated. Every week, changes to source code strings are extracted as translations, which are merged back to the repo and pushed to edX’s Transifex resources. Translated strings are also merged back into the repo every week.

Open Source contributors can use make extract_translations to extract source file string changes, make push_translations to push changes to Transifex (assuming credentials are available), and make pull_translations to pull translations from Transifex.

OAuth2

The Discovery service uses the OAuth 2.0 protocol for authentication. The LMS currently serves as the OAuth2 provider.

If you’re using devstack [https://github.com/openedx/devstack], OAuth2 should be configured for you. If you need to configure OAuth2 manually, you need to register a new client with the OAuth2 provider (the LMS) and update Discovery’s Django settings with the newly created credentials.

A new OAuth 2.0 client can be created at http://localhost:18000/admin/oauth2_provider/application/.

	Click the Add Application button.

	Leave the user field blank.

	Specify the name of this service, credentials, as the client name.

	Set the URL to the root path of this service: http://localhost:8150/.

	Set the Redirect URL to the complete endpoint: http://localhost:18150/complete/edx-oauth2/.

	Copy the Client ID and Client Secret values. They will be used later.

	Select Confidential as the client type.

	Select Authorization code as the authorization grant type.

	Click Save.

You can create a new OAuth 2.0 application on the LMS at /admin/oauth2_provider/application/:

	Click the Add Application button.

	Leave the user field blank.

	Specify the name of this service, discovery, as the client name.

	Set the URL to the root path of this service: http://localhost:18381.

	Set the Redirect URL to the complete endpoint: http://localhost:18381/complete/edx-oauth2/.

	Copy the Client ID and Client Secret values. They will be used later.

	Select Confidential (Web applications) as the client type.

	Select Authorization code as the authorization grant type.

	Click Save.

Finally, copy the newly created Client ID value to the SOCIAL_AUTH_EDX_OAUTH2_KEY field and Client Secret to the SOCIAL_AUTH_EDX_OAUTH2_SECRET field in Discovery’s settings (in course_discovery/settings/private.py, if running locally).

Publisher

“Publisher” is an information management tool meant to support the course authoring, review, and approval workflow. The tool can be used to manage course metadata and is designed for use with the Drupal site that hosts edx.org.

Index

1. Update Program Structure to Include Degrees

Status

Accepted

Context

The second phase of the Master’s Theme requires us to support the persistence of metadata about different
Master’s Degree programs in the course-discovery service. The data is later surfaced on our marketing site in the
corresponding “product pages” for these degree programs. We need this decision to make sure we can realize the
marketing requirements as fast as possible, and at the same time, make sure we can scale - both out to a variety of
Master’s degree programs, but possibly to different types of degree’s as well (e.g. Bachelor’s).
See the OnlineMasters [https://openedx.atlassian.net/wiki/spaces/EDUCATOR/pages/762642493/Online+Masters] page for more information.

Decision

For the Fall 2018 phase of the Master’s project, we are utilizing a design of a Degree model extending
the existing Program model. All the parties talked to have given support for this solution.

The design

The Degree model extends existing Program model. We’ll add a new table with a foreign key to the existing
Program table to store and define new Master’s degrees. We’ll create a new ProgramType with the name “Masters”
to indicate that a degree is specifically a Master’s degree. The information required for the marketing product
page for a Master’s degree will be stored in the union of the set of fields from Program and Degree. The
Degree table will contain fields that are only relevant in the context of a degree (e.g. an application deadline
or application URL).

We will also create a Curriculum model which captures the relationship between a degree and the Courses
and Programs that compose that degree’s curriculum.

Why

	With the extension model, we can leverage the existing software to index and serve Master’s program data via
the course-discovery API like any other program, since the program table will have a row for each Master’s
degree instance. The Degree table will help us capture the unique requirements for Masters
(mostly marketing product page requirements at this time).

	We can utilize existing code that relies on the ProgramType model to make Master’s degrees that are newly-created
in the course discovery service to automatically populate a new Drupal page of the Master’s content type.

	Similarly, there is already code in place that uses ProgramType to control search facets. We would
like Master’s to be a facet of course/program search.

	The separation of marketing-centric data from curriculum-centric data will make management of degrees
easier and less error-prone for users (e.g. the marketing team).

	Having the relationship between degrees and Micromasters defined this way avoids the nested
program to program relationship that can be super confusing.

All Choices we Considered

	As part of Programs model: We can insert Master data into the existing program model. With this approach, we can satisfy the search and facets requirement, as well as affiliate api requirement pretty easily. However, existing program model fields do not map well to the content needs of Master program page design. The relationship between Masters and Micromasters programs would need new models.

	Extension model to existing Programs model: We create a new program extension model which has a foreign key pointing at a row within the Program model. The Master program page data, which cannot be captured by the existing Program model can be easily captured in the extension model. A Master program would have its data in both the Program model as well as the extension model. The relationship between Master and Micromasters are defined through extension model. This way, the have data integrity check for relationships on the DB level. However, we would need to adjust the django admin authoring process for Masters to include this additional model. It also requires in extra level of indirection to figure out how a Micromaster program is related to a Master

	Create a new Degrees grouping: Create a brand new model called Degrees. This approach should lay the foundation for future like Bachelors. The new Degree model would help relationship between Masters and Courses on a level where we can generalize and scale. However, this approach require big work load to add net new functionality to all aspects of the discovery service, from search to affiliate API to new business logics

	Create a content relationship data model which allows us to have a more generic way of grouping content together. This would involve creating a model which contains fields for storing two different content IDs and a field for describing the relationship between the content items, e.g. requires, contains, etc. A separate model could be created to store attributes associated with a particular piece of content (which could be used for storing metadata associated with the masters program in a generic way). The edx-milestones package does something along these lines and could possibly be used out of the box or to inspire the data model that would fit the particular content item relationship problem we are trying to solve here.

Requirements

	Masters will have it’s own landing page, just like Micromasters,
to show case various masters program, but with a new design

	Masters will have it’s own design for Master about pages

	Search Facet will show Masters at the same level with Micromasters,
XSeries and Professional Education, underneath the Programs group

	Each Master Program will have it’s own search result card, as part of the Programs group

	Masters will be show cased in the same Programs drop down from edx.org top navigation

	Should be part of the affiliate API return

	Must be able to be consist of 1 to N Micromaster programs

	Must be able to be consist of 0 to N courses in addition to Micromaster programs

	Need to include electives (probably)

2. Update Course Metadata Course and Course Run APIs

Status

Accepted

Context

With Publisher being pulled out from course-discovery in favor of the creation of a self-service Publisher embedded inside of Studio, the existing Course and Course Run APIs need to be modified to accommodate the new use cases of self-service Publisher. Permission levels for access to the different write endpoints will be a necessary change, but will not be discussed in this Decision Document.

Decision

We have decided to augment the existing Course and Course Run APIs from alternative choices described below. The changes will require setting permission levels for the endpoints based on the different permission groups defined for self-service Publisher.

Design

The modified endpoint will include POST, PATCH, and DELETE functionality. All of the write endpoints will have permission levels set up such that users will only be able to write to courses they have edit access to. Additionally, the GET endpoints for Courses and Course Runs will be changed to have the functionality to return the list of courses a user has edit access to.

Why

Self-service Publisher is intended for our users (course teams) to be able to create and edit course content without needing to include edX in the process. In pursuit of this functionality, we need APIs that can support creation, editing, and deletion so it can truly function as self-service. It is also important to include the appropriate permissions on each of these write endpoints to ensure no user is able to create a course, edit, or delete a course for an organization the user does not belong to.

Other Choices Considered

	Version API: Versioning the API was skipped due to there not being a need to change any of the functionality of the existing API. Since we would not be introducing any breaking changes to the API, it was decided that a new version was not necessary.

	Create new API: Creating a new API could have led to having a new API based on the client consuming the API (in this case, self-service Publisher). Although we believed this option had merit since the existing API was intended as a read only view and the new consumer will be for writing, creating a new API for each new client seemed like overkill. Additionally, the current API already supports filtering the catalog based on the needs of marketing (a different client) and so to introduce a new API for our client was unnecessary.

Requirements

	All current functionality of the Course and Course Run APIs remains the same for consumers.

	GET must still be able to return the full catalog to authenticated users.

	GET must be able to return the list of courses a user can edit to that user.

	A user should be able to POST a new course within the correct permissions for that user.

	A user should be able to PATCH to a course if the user has edit access to that course.

	A user should be ablt to DELETE a course if the user has edit access to that course.

Publisher Roles and Permissions

Status

Accepted

Context

As we develop a new frontend for Publisher, we wanted to rethink and simplify
the current roles system.

	We need some way to distinguish which users are allowed to perform sensitive
actions like publish new courses.

	We want to use the same accounts as the rest of the Open edX ecosystem.

	We want to allow as much of a self-service experience for course teams as
possible. So very few checkpoints relying on staff users.

	But we do want to allow for staff users to provide some legal oversight
and to assist with the publisher experience.

	We do not want to mix studio and publisher permissions, since those are
often handled by different people on the partner side.

Decision

Normal staff users will have access to everything by default, but nothing
will require their participation.

Legal staff users will have an extra bit of control to toggle some settings
like whether a course is OFAC restricted, for example. There may be some
checkpoints waiting on them before a course team can publish. These users will
be marked by belonging to a particular group. That group should be configurable.

Membership in an org group will be managed by staff users. But once you’re in
that group, you can create courses and course runs for that org. Once you do,
you are the first and only editor of that course. Any current editor can add
any other editor from that same org. Or can remove any editor.

Consequences

Removing a user from an org group should remove editor privileges to all
courses in that org. Likewise deleting a user.

If a course has no editors left, rather than orphaning that course, anyone
in that org should be able to edit it. Once an editor is added back to it,
normal rules apply again.

But mostly, this setup will be able to reuse current organization and permission
models. We already have OrganizationExtension that connects organizations to
groups, which users can belong to.

And JWT tokens already tell us who is staff.

Publisher Draft Model Decisions

Status

Accepted

Context

As we develop a new frontend for Publisher, we need to support handling a Draft
mode of Courses and Course Runs (prior to OFAC approval) that will show
potential changes before a go-live action.

	We need to be able to stage, save, and present changes without modifying the
live course.

	We want this content to be served from our REST endpoints alongside the
Courses or Course Runs.

	We want to allow for any fields on the form pages to be draft-able even if
they are not part of the course_run or course tables.

	We want to easily be able to tell which Courses or Course Runs have active
drafts.

Terminology

Draft: Content that is being edited by a course team and has yet to be served live
Official: Non-draft content that is ready to be served live

Decision

Add an additional row for each currently existing row within the tables that
need draft states. Creates will create a new “draft” row that will be the
version that is modified.

Add an additional column representing the differing state for the forms we need
history for. This will prevent us from increasing our table size, as well as
prevent us from having to modify our APIs outside of a specific query param
for unpublished data. The default manager will need to query against the
official states. Our schema will also be up to date via default migrations,
and any consumer of the API will be able to act directly on reading from either
official or draft rows.

Add a foreign key column that points between the draft version and the
official version. For performance reasons when needing to flip between them.

Add a query parameter to list endpoints that will return draft versions of
rows if available, and if not available, will return the official versions.
We can just re-use the editable=1 flag for that.

All form and API updates will be applied to the draft row. And only after a
successful review, the data of the draft row will be written to the official
row. (Although that “review” might be a no-op depending on business logic -
it may be skipped if the course run is already live for example.)

Benefits

	Automatically keeps schema updates for draft versions in sync with official
versions.

	Single point of access for differing between Draft and Official state at the
ORM object manager level.

	Minimal to no API changes necessary to support the proposed design.

	Consumers of API can easily work against Draft or Official versions without
breaking data contracts.

Consequences

By choosing this solution over alternatives we miss out on a few things, as well
as open ourselves up to certain risks.

	Duplicating data across the tables we have will be a non trivial task,
as well as doubling those tables’ sizes.

	Indexes will need to be updated accordingly to accommodate the new access
pattern we will be querying on.

	Base object manager classes will need to be overridden.

	Primary/Composite Primary keys will need to consider the draft/official state.

	Historical changes will not exist by default, it will be difficult to rollback
and difficult to restore revisions.

	Relations for many to many, or one to many may not be the easiest to propagate
to the live “official” versions (update vs drop/create).

Other Considered Approaches

JSON Column

Add an additional column to each table that needs a draft version. This column
would store the changes applied to the form, as well as pointers to the related
columns. This column would be applied and zero’d out on a successful “publish”,
with the existence of a non-null value detecting that it is in a draft state.
Additional efforts would need to be made to apply schema changes to the stored
draft states.

Historical Table

We currently have a set of Historical Tables that keep a running history of
changes made and applied to a Course/Course Run. This table could be updated to
provide the draft state with the addition of a boolean to show which versions
are published, and the more recent entries since then being the draft states.
The schemas would be kept in sync, but the APIs would need to serve content from
the historical tables instead of the base tables.

Publisher Salesforce Cases/Comments Integration

Status

Accepted

Terminology

Comment: An exchange between an external user and an edX employee

Record: A representation of a model (Course/Course Run) within Salesforce

Old Publisher: Course Discovery frontend integrated with the Discovery IDA

New Publisher: frontend-app-publisher repository, microfrontend written in React using Discovery APIs

Context

Old Publisher contained a section of comments that allowed our partners and course teams
to communicate with our internal users for data changes, and other general requests. This
feature is still required for New Publisher, and we can rely on Salesforce to handle
workflows and creation of actionable statuses/emails, instead of writing those ourselves.
However, this means that the data needs to be available inside of Salesforce for us to
interact with.

	We need to be able to create Accounts, Users, Courses, Course Runs, Cases inside of
Salesforce

	We want our users to not need Salesforce accounts or access

	We want a hierarchy of Accounts linked to Courses linked to Course Runs linked to
Cases linked to Users

	We want all of our historical comments from Publisher available in Salesforce

	We want to be able to access the Cases for a Course or Course Run via a REST API

Decision

This feature will remain optional to accomodate Open edX users.

Create an optional configuration within Course Discovery admin to accept
Salesforce credentials, where if it is set, the feature is enabled.

Create a RESTful endpoint within Course Discovery to accept Course/Course Run
IDs to proxy GET requests out to Salesforce for Case data.

Create a RESTful endpoint within Course Discovery to proxy write requests
out to Salesforce for creation of Cases.

Add Django ORM save hooks to write out to Salesforce if and only if the
configuration exists in order to migrate data over to Salesforce in an
ad-hoc way so anything that isn’t needed isn’t bulk loaded.

Create a UI that surfaces Course level Cases with a string of comments internal
to that Case, and allows users to post additional comments, as well as read
comments belonging to that Course.

Bulk load all historical Publisher comments by creating the proper relationships
and so that our users don’t see any messages dropped.

Benefits

	Moves Workflow and e-mail requirements outside of Engineering, as well as enables
additional customization down the road that will not require Course Discovery
changes.

	Allows users to interact with our internal systems, without needing direct access.

	Ad-hoc creates ensures there are no dangling cases, and bulk will allow a seamless
transition to begin using the system.

Consequences

	Locks us into an external technology.

	Impacts Open Source community if they want this feature, by requiring external dependencies.

Disallowing Course Number Changes in Publisher

Status

Accepted

Terminology

Course team - The team of people from a partner Organization that work in
Publisher to create and manage Courses and Course Runs.

Course number - Course team defined number of their Course. Becomes part of the
Course key. Looks like CS101.

Course key - Combination of the Organization and the Course number.
Looks like edX+CS101

Course Run key - Combination of Course key and term (based on start date).
Looks like course-v1:edX+CS101+2T2019. Immutable after creation.

Context

Upon Course Run creation, the Course key is used to create the Course Run
key. The Course Run key is then used as part of the URL in the LMS and in many
other places throughout the edX ecosystem.

In today’s world, if a Course team wants to change their Course number, they
have to create a brand new Course with the number they want, despite the actual
course content being identical to the old Course. All runs created under the new
Course will have the new Course number reflected in their Course Run key, and
thus LMS URL. When this happens, Course teams will also move their old (or new)
Course Runs to point to the new (or old) Course so all of their Course Runs
continue to live together.

Example:
 Current Course Number: 100x
 Current Course Run Key: course-v1:edX+100x+2T2019

 New Course is created with Course Number 101x

 New Course Number: 101x
 Newly created Course Run Key: course-v1:edX+101x+3T2019

 *PC repoints course-v1:edX+100x+2T2019 at the new Course edX+101x
 (creating the Course/Course Run key mismatch)*

It was previously thought that the Course key would always be a substring of the
Course Run key. However, with the above situation, it is possible to end up in
the case where the Course Run key and the Course key differ because the Course
Run has been remapped to a different Course. Since this assumption about Course
keys being a substring was already invalid, we wanted to investigate if we could
instead enable Course teams to change their Course numbers so we do not have to
create new Courses to have the desired result.

Decision

At this time, we disallow modifying the Course number in both the Publisher app and the Publisher Microfrontend.
The Course number is used as a matching string between data sets in too many places.

But we do allow setting a separate Course field that controls what key new reruns use as a course key.
So if we want to rename a course key, we’ll instead set this new key.
The course key will remain constant at the old value and continue to be able to be used for matching data sets.
But all new reruns in that course will use course run keys derived from this new field.

I believe this could (and should) change in the future to simply allow renaming a course key,
so I am documenting below the investigation I did including some of the changes that would need
to happen before allowing that.

Investigation

Upon inspection of the course-discovery code base as well as the Ecommerce,
Prospectus, and edx-platform repos, we determined that Course keys were not
being used in such a way that would require them to be immutable and decided to
look into allowing Course teams to freely alter their Course numbers. The
relevant JIRA ticket can be found here. [https://openedx.atlassian.net/browse/DISCO-1222?oldIssueView=true] Although
switching Course numbers could be supported in this code base, the decision to
not allow modifying Course numbers was confirmed after speaking to many of the
stakeholders involved that could or do use Course keys. Below is documentation
of the different groups spoken to and the outcomes of those conversations. It
also includes some avenues that were not explored, but should be if we ever
decide to revisit this decision.

Marketing - uses course keys as part of their scripts or reporting. Open to
switching to UUIDs, but would need to make the switch. See thread here:

Dillon Dumesnil
 Hi Marketing! I’ve been looking into the possibility of changing
 Course numbers (NOT Course Run keys) and was curious if anyone here
 currently uses them in any manually maintained lists or spreadsheets.
 If so, please let me know in a thread here so we can talk further.
 Thanks for your help!

Ned Elwell
 Can you give an example of a course number? (our terminology isn't
 great in the course key, course number department)

Dillon Dumesnil
 Totally understand. Something like this: Say you have the course key
 MichiganX+PUBLIB606x. The idea would be to allow them to change it to
 something like MichiganX+PUBLIB616x. The change being going from 606x
 to 616x

Ned Elwell
 We don't have any manual sheets that key off of that, but it would
 break a LOT of reporting.
 Unless we're equipped to redo reporting on a value that's not related
 to course number/name, I can foresee problems with this.

Dillon Dumesnil
 Would UUID be a potential fix for this issue?

Ned Elwell
 I think the uuid fix would unblock any marketing reporting. it's just
 a major perspective shift. Otherwise, I see no issues as almost all
 other reporting is based on course run.

[Paraphrased]
Ned Elwell
 Would there be no historical record of the Course once the number
 changes?

Dillon Dumesnil
 Well the row will continue to exist, but the course key on that row
 would be changed. We do have historical course tables in
 course_metadata that would see these changes, but as far as the actual
 table goes, that one row would just change course keys

Data Engineering - Brian Wilson did research into this and does not believe
there are any major concerns here. Should also encourage to always use UUIDs.
See thread here:

Brian Wilson
 I’m assuming that the only things in SQL scripts that would actually
 break on a change to values in
 discovery_read_replica.course_metadata_course.key would be tables that
 are calculated incrementally and store and make use of this value.
 I’ve identified the following as incremental tables:
 * business_intelligence.user_session_summary
 * finance.recognized_certificate_revenue_total
 * business_intelligence.activity_engagement_user_daily
 * business_intelligence.identify
 * business_intelligence.deprecated_user_activity_engagement_eligible_users
 * business_intelligence.survey_history
 * business_intelligence.experiment_exposure
 * business_intelligence.utm_touch
 * business_intelligence.country_region_mapping
 * financial_reporting.intermediate_organization_courserun_previously_paid
 The main one I’m worried about is
 finance.recognized_certificate_revenue_total. As we’ve seen before,
 it’s not the easiest set of queries to analyze.

 I should also note that this change would also affect
 production.d_course., not just course_metadata_course.

 finance.recognized_certificate_revenue_total, of course, depends on
 both.

 Okay, the latter table doesn’t actually persist a course-level
 identifier, only the course run key (as course_id). And it looks like
 all the places that group by the catalog_course will switch to using
 the new values in case of any change. So I think things should be okay.

 One level where there may be issues is with a lag between
 course_metadata_course changing, and when the change shows up in
 production.d_course. That lag effect might be an issue. But I’m
 hoping it would be only temporary.

Data Science - Details for the impact to financial reporting if we change
course keys (as reported by Jacqueline Finkielsztein):

We have some policy tables that hold exceptions for revenue share contract
business logic. These policy tables come from google sheets that partner
managers fill out in which they only provide us with course keys. We take
these course keys and join them on other tables in our database. However,
these are hardcoded keys on a google sheet. Therefore, when we join these
policy tables to tables in our database, the course keys wouldn't match if
we were to change them in our database tables. The tables are:
 financial_reporting.policy_organization_course_addition,
 financial_reporting.policy_organization_course_mapping,
 financial_reporting.policy_course_mapping,
 financial_reporting.policy_course_revshare,
 financial_reporting.policy_joint_course_revshare

I believe a potential fix for this issue is to get partner managers to start
using UUIDs and change the scripts to match on UUIDs instead of Course keys. On
that note, I think we should encourage Data Science to always use UUIDs if possible.

Support - I reached out if this change could cause any issues and heard no
response. This is to be expected since Support deals more with Learners who
would not really be affected by this change.

Enterprise - There is an issue with catalogs (stored in the LMS) and those being
updated since they use course keys now. Additionally, they construct URLs that
businesses use to enroll their users in courses that utilize course keys and
would break if course keys began changing. Solution is to move to UUIDs, but
will likely require a script to pull in all of the UUIDs based on the course
keys they have now and also ensuring there is backwards compatibility. Benefit
is they already use UUIDs for subjects so this wouldn’t be a huge change once
we are able to start using UUIDs for courses in their URLs.

PCs - Very open to the idea and didn’t identify any causes of concern.

Revenue/edx-platform - The StackedConfigurationModel inside of platform has a
field called org_course that uses course keys and can choose to include or
exclude course runs from different experiments based on that. Additionally, if
the course (being course run in this case) is passed in, it will create the
org_course based on the course run key and that may not always match with what
is in the database. The current models that utilize the StackedConfigurationModel
are DiscountRestrictionConfig, CourseDurationLimitConfig, and ContentTypeGatingConfig.
Possible solution to this problem could be to add in some course information in
the CourseOverview model in platform, but definitely going to need this
information in platform so we can have quick lookups

edx-platform Repo - Do a double check in edx-platform to look for anything using
org+course relationships

Research data packages for Partners - Brian Wilson looked into this and found we
only use Course Run keys as part of the research data packages. Specifically, we
pull the org from the course run and map the org to Partner, so there’s no
concept of course — just course_run and org.

External Course Run Keys

Status

Accepted (circa June 2019)

Terminology

Course number - Course team defined number of their Course. Becomes part of the
Course key. Looks like CS101.

Course Run key - Combination of Course key and term (based on start date).
Looks like course-v1:edX+CS101+2T2019. Immutable after creation.

External course key - External university identifier for a course run.

Registrar - django backend integration layer between edX and master’s partners that allows partners to manage program enrollment for master’s students

Old Publisher - Course Discovery frontend integrated with the Discovery IDA. On track to be deprecated in the future.

New Publisher - frontend-app-publisher repository, microfrontend written in React using Discovery APIs

Context

Within the Registrar service, there are several endoints that require an edX
course run key in order to identify a specific course run. When the Registrar API
documentation was first released to partners, they expressed a desire to identify course
runs in a different way. They have systems that identify their courses by some internal
naming scheme, and they requested the ability to use those identifiers in the context of
Registrar so that they wouldn’t have to convert between their own course run ids and
edX course run keys.

Example:

There is an edX course, Introduction To Calculus.
It has a course run with the key course-v1:exampleX+IntoToCalc+Fall2020.

In the partner’s systems, their Introduction to Calculus Fall 2020 course is
called MATH205-Fall20”, and they would like to use this identifier when interfacing with edX.

Decision

We decided to add a field external_course_key to the CourseRun model that could
be set through Publisher, and allow partners using the Registrar API to identify
course runs with either an edx course run key or their own external_course_key. This field should currently only be used on course runs that are a part of a master’s program.

We came to the decision to enforce external course key uniquness at a program level, and
at any level below that. That means that no course can have two course runs with the same external course key, and that no Curriculum can contain two courses with course runs that share an external course key, and that no program can contain two curricula that have courses that have course runs that share a course key. From here on, a program that would violate this will be refered to as being in a ‘bad state’.

We enforce this by way of three new pre_save signal handlers, on CourseRun, CurriculumCourseMembership, and Curriculum.

Considerations

The decision was made to do the check as a pre_save hook on course_metadata models because we want to prevent any ‘bad state’ from being saved in the database, and we wanted to surface the fact that there was a ‘bad state’ to a user as quickly as possible. This adds some complexity to saving any of these models, specifically CourseRun, but we wrote the signal in such a way as to return immediately if the CourseRun has no external_course_key. Because we expect only CourseRuns that are a part of a masters program to have this field, this addistional complexity will be immediately avoided for almost all CourseRuns.

To avoid adding a pre_save signal handler, we also considered raising an error only once a user made a Registrar API request for a program that was in a ‘bad state’. We thought that it would be best to prevent the user from having to go back and forth between two different services (publisher and Registrar), and also that the user setting up programs in publisher may not even be the same user as the Registrar user.

We also considered doing the validation as a form validation on publisher, but decided against that because we wanted to also prevent changes from the django admin page from accidentally getting us into a ‘bad state’.

At one point we considered storing the field entirely within Registrar. Registrar is currently the only place such a mapping is required, and it’s also where we define and translate external program keys (another piece of master’s-specific data). Unfortunately, due to the structure of Old Publisher, that was found to be unworkable without explicitly coupling old publisher to registar. The thought was that when a course was published, a call could be made to Registrar to check the uniqueness of the key and to update the mapping.

Potential Future Improvements

Some good news is that the above approach is viable in new publisher. Once we have moved to exclusively using new publisher, it would be possible to move external_course_key and the related logic out of course discovery altogether and move it entirely into Registrar.

Publisher Salesforce Feed Item Format

Status

Accepted

Terminology

Comment: An single post between an external user and an edX employee

Case: For example, each course in Publisher has a single Case that holds all the Comments for that course.

FeedItem: A Salesforce object to wrap the actual Comments

Context

Salesforce Cases have a Chatter Feed that displays actions that occur within a Case. In order
to share information from Publisher to Salesforce, we need a User, a Course Run Key,and a
Comment. We cannot create Users because they are tied to Salesforce licenses, but even if we create
them just-in-time to associate with a comment, then disable their active status, our Salesforce
team does not think creating > 400 “dead” users is reasonable to leave in our system. Additionally,
SObjects (a Salesforce type), cannot be customized, so we cannot leave any additional information
(email, first/last name) tied onto the SObject itself. FeedItems are an SObject, and are the way we
can associate anything with a Case itself.

Decision

We will create a format which will represent the user, the course run key (if it exists), and the
comment itself. This will all be stored on the FeedItem.Body, and we will write custom parsing to
handle the serialization for both reading and writing to/from Salesforce. We will attempt to get the
match to our pattern before defaulting to the Salesforce author and the raw comment body when
returning this over the API

Benefits

	It allows us to use Salesforce and the default Salesforce views/workflows for Cases and Chatter

	We control both the reads and the rights from our system to Salesforce, so all entries will adhere
to our format

	Easy to discern information at a glance, and end users won’t know the difference

Consequences

	This is a less elegant solution than having specific field types inside of Salesforce

	It is fragile in the sense that updating our format will always need to be backwards compatible,
or that we will need a migration script to update old entries

	Loses out on all User data in Salesforce and instead just has a username and first name/last name,
though this is not a negotiable consequence

LMS Course Types in Course Metadata

Status

Accepted

Terminology

Product - A Seat or Entitlement that is offered in the E-Commerce service.

Mode - The LMS Course Run mode available. In the edX ecosystem, these would
be Audit, Verified, Professional, No ID Professional, Credit, Masters, and
Honor.

Context

Course Metadata keeps its own record of two types of E-Commerce Products:
Seats for Course Runs and Entitlements for Courses.

In the past, Course Discovery did not have reliable knowledge about the
connection between E-Commerce and the LMS in terms of E-Commerce Products and
LMS Course Run Modes. In order to determine anything about the LMS Modes,
Course Discovery would have to look at the Seats that exist for a particular
Course Run in Course Metadata and infer from there. This was possible when
Seats and Entitlements had a one-to-one mapping to the current LMS Modes that
existed.

However, with the inclusion of Masters, we saw a divergence between Seats in
Course Metadata and the products in E-Commerce. Masters is a LMS Course Run
Mode, but has no E-Commerce products associated with it, breaking our earlier
assumption of Seats being used to inform on LMS and E-Commerce. Additionally,
the E-Commerce Data Loader (part of the refresh_course_metadata management job
in Course Discovery) syncs Course Metadata with E-Commerce, so when the
data loader sees Seats in Course Metadata that have no E-Commerce counterpart,
it deletes the Seats out of Course Metadata. This situation has now led to
Course Runs in Course Metadata that have no Seats so there is no good way of
determining the LMS Mode.

The problem we are trying to solve is this then: how to cleanly define the
combinations of LMS Modes and E-Commerce Products that exist for our various
Course / Course Run use cases. The goal is for this model to also be easily
expanded as new Products or Modes are added. Additionally, we want Course
Discovery to remain a source of truth for this information so we want to also
be able to keep track of metadata associated with Products or Modes.

Decision

In order to accommodate both E-Commerce Products and LMS Modes in Course
Discovery, we have decided to add in four new models.

The first is the Mode model, the LMS Mode equivalent to the SeatType
model. The idea behind this is to allow SeatType to be the connection of the
types in the E-Commerce service and Mode to be the connection to the LMS
Modes. This model will also be able to keep track of a number of metadata
fields about the different Modes (such as if the Mode requires ID
verification or who the payee is for the track).

The second model is the Track model. This model will contain fields for the
Mode selection as well as the Product (Seat) associated with that selection.
Two examples of Tracks are:

mode: Verified, seat_type: Verified (indicates Verified Seat in E-Commerce)
mode: Masters, seat_type: None (indicates there is no E-Commerce Product)

The third model is CourseRunType, the connector between a Course Run and its
Tracks. CourseRunType will also be able to contain run-specific information,
such as if this run has a marketing site or not.
An example of CourseRunType:

One row in the CourseRunType could have the label "Verified and Audit" and
the Audit and Verified Tracks. This would mean any Course Runs pointing at
this row would have Verified and Audit Tracks in the LMS and Verified and
Audit Seats in E-Commerce.

A similar, but different situation, would be the CourseRunType row for
"Masters, Verified, and Audit". Any Course Runs that are connected to this
row will have Masters, Verified, and Audit Tracks. In this case, the course
runs will have all three Modes, but will continue to only have Verified and
Audit Seats in E-Commerce since Masters does not have any E-Commerce
Products associated with it.

The last model is the CourseType model, the connector between the Course, its
Products (Entitlements), and the allowed CourseRunTypes for its Course Runs.
The CourseType will contain information that will reduce the possible
selections for its Course Runs and this will also determine if an Entitlement
is needed. Example:

CourseType could have the row "Masters, Verified, and Audit". This would
indicate that any of the Course Runs inside this Course could have any
allowed permutation in CourseRunType that makes sense with this Course
selection. Examples of possible CourseRunTypes are:
 * "Masters, Verified, and Audit"
 * "Verified and Audit"
 * "Audit only"
 * "Masters only"
This selection would also mean a Verified Entitlement should be made in
E-Commerce since it is possible for some of its Course Runs to be Verified.

It is believed this new format will be more resilient and explicit moving
forward in Course Discovery. It will allow for clear specification at both the
Course and Course Run levels for what type it is and what Products are
associated with that selection.

Entity Relationship Diagram:

[image: ../_images/course_discovery_types.png]

Update November 18, 2019:

We are more broadly allowing mismatches between a Course’s CourseType and its
Course Runs’ CourseRunType. A mismatch is defined as when a Course Run’s
CourseRunType is not one of the CourseRunTypes listed under the CourseType’s
Many to Many relationship with CourseRunType. We see the use case of this
being a way to support Course Runs that do not fit the mold of a particular
CourseType, despite most of the other Course Runs matching. One example would
be having several Course Runs that all have Verified and Audit seats, but one
Course Run having no seats. In the past, there would be no CourseType match
because a Course Run having no seats does not exist within any CourseType. By
allowing mismatches, this Course could have the Verified and Audit CourseType
and the Course Run with no seats could have the Empty CourseRunType.

It is worth noting that within edX, we are using mismatches as a way of
supporting historical oddities in our system. We do not encourage using
mismatches generally or as a best practice, but more as a way of dealing with
oddities that do not require full CourseType support.

Update June 12, 2020:

As we began releasing the newest Open edX release (Juniper), it became clear that we made some misses in regards to the defaults provided to the Open edX community. As of the date of writing, we are adding in support for Honor into the defaults provided through migrations. Course Types are still intended to be customizable to each Open edX installation, but we want to do our best to widely support common cases. With that idea in mind, I am documenting below the list of all of the default Course Types, Course Run Types, Tracks, and Modes that will come with running migrations. The table includes each Course Type and the connections to all of its children.

	Course Type

	Course Run Type

	Track

	Mode

	Seat Type

	Audit Only

	Audit Only

	Audit

	Audit

	Audit

	Professional Only

	Professional Only

	Professional

	Professional

	Professional

	Verified and Audit

	Audit Only

	Audit

	Audit

	Audit

	Verified and Audit

	Audit

	Audit

	Audit

	Verified

	Verified

	Verified

	Credit

	Audit Only

	Audit

	Audit

	Audit

	Verified and Audit

	Audit

	Audit

	Audit

	Verified

	Verified

	Verified

	Credit

	Audit

	Audit

	Audit

	Verified

	Verified

	Verified

	Credit

	Credit

	Credit

	Honor Only

	Honor Only

	Honor

	Honor

	Honor

	Verified and Honor

	Honor Only

	Honor

	Honor

	Honor

	Verified and Honor

	Honor

	Honor

	Honor

	Verified

	Verified

	Verified

	Credit with Honor

	Honor Only

	Honor

	Honor

	Honor

	Verified and Honor

	Honor

	Honor

	Honor

	Verified

	Verified

	Verified

	Credit with Honor

	Honor

	Honor

	Honor

	Verified

	Verified

	Verified

	Credit

	Credit

	Credit

If you’re only curious about which models exist (the distinct values from each column above), they are listed below:

	Course Type:

	Audit Only, Professional Only, Verified and Audit, Credit, Honor Only, Verified and Honor, and Credit with Honor

	Course Run Type:

	Audit Only, Professional Only, Verified and Audit, Credit, Honor Only, Verified and Honor, and Credit with Honor

	Track:

	Audit, Professional, Verified, Credit, and Honor

	Mode:

	Audit, Professional, Verified, Credit, and Honor

	Seat Type:

	Audit, Professional, Verified, Credit, and Honor

We added in a script to the Refresh Course Metadata command to do a best effort matching of the Courses/Course Runs with their corresponding Course Types and Course Run Types. The script that attempts to do the matching can be found at: course_discovery/apps/course_metadata/data_loaders/course_type.py. It tries to look at the Entitlements associated with the Course and the Seats associated with all of the Course Runs for that Course. From all this information, it will try and find a Course Type and Course Run Types that match.

We believe through the initial migrations adding in Course Types, Course Run Types, Tracks, and Modes, we have covered many of the common cases. We do however recognize that we cannot plan for every possibility and it is possible to encounter an error when running Refresh Course Metadata. This error will look like

Calculating course type failure occurred for [{course_key}].

From there, you can look into the Course Discovery Admin (Django Admin) to try and see why this may have happened. The first place to check would the Entitlement associated with the failing Course. The only Entitlements supported by default are Verified and Professional Entitlements and the Course Type must also have it set (for example, Audit Only and Honor Only have no Entitlement). If the Entitlement does not line up with any Course Type, that would be the first thing to fix. This can either be done via adding your Entitlement type to the correct Course Type or by creating a new Course Type (more on this later).

The next place to check is by pulling up all of the Course Runs associated with the failing Course and looking at their Seats. The Seats must match up with a Course Run Type (see the corresponding Seat Type column in the rows with the Course Run Type). Remember that all Course Run Types listed under a Course Type are all applicable to be matched with. Example: A Course Type of Verified and Audit can have Course Runs matching either Audit Only or Verified and Audit. If your Course Run Seats do not match any Course Run Types (via the Track’s Mode and Seat Type), you can either add the appropriate Tracks to the Course Run Type or create a new Course Run Type (see below). Hopefully through these steps, you can find where the disconnect is happening between the expected values from the table and what is actually happening in your Open edX installation.

There is an additional scenario worth covering which is if you have created your own LMS Modes or E-Commerce Seats or Entitlements. In this case, you will need to create a new Course Type to match your system. I would start in this case by making a Mode that corresponds to the LMS Course Mode for your Course Runs and a Seat Type that corresponds to the E-Commerce Seat type. From there, you can create the Track for the newly created Mode and Seat Type. Then you can set up the CourseRunType to utilize the Track and finally the CourseType that includes the CourseRunType. This logic can also be expanded to create multiple Modes, Tracks, CourseRunTypes, and CourseTypes as applicable to your system. It can also be helpful keeping in mind that Course Types can include many Course Run Types.

Alternative Approaches Considered

No major data model changes (continue to infer LMS Tracks based on Products
in Course Metadata) - One option would be to just not change the current
infrastructure to accommodate for LMS Tracks inside of Course Discovery. This
option would still require making changes to work for the Masters case, but
could be done with a smaller overhaul. This option was rejected as it was
decided there would be current and future benefit in having a clear connection
from Course Discovery to both E-Commerce and LMS. One such benefit is being
able to make the SeatType model the source of truth for what types of Products
we offer, whereas currently Masters exists as a SeatType despite never
existing inside of E-Commerce.

Allowing selection of all Tracks - In the examples above, the option for
CourseType and CourseRunType always followed the form of a label (“Verified
and Audit”). Another option we considered was allowing the user to simply
select all of the types they wanted in their Course or Course Run. For
example, with the “Verified and Audit” case, the user would select a
“Verified” option and an “Audit” option. This path was decided against due to
the complex nature of our Course and Course Run types. For example, we do not
allow a single Course to have the Professional type and
any other type (Professional must exist on its own). Another example is how we
will have a type that looks the same, but differs in a few ways. This
situation happens when we have a standard Audit Course Run and a Small Private
Online Course (SPOC). In both cases, the LMS Track is Audit, but the SPOC has
no E-Commerce Products and no marketing page whereas the the standard Audit
Course has both. For these reasons, it was decided that providing only labels
to the user will allow us to encapsulate the underlying logic and abstract
away the implementation details of concepts such as “Audit”.

Course Run Keys in Course Run URL slugs

Status

Accepted

Context

The marketing site used to use the most recent (modulo some business logic) course run URL as the main URL for the whole course, redirecting all other course run URLs to the currently active course run URL. At this time, course run URLs were generated from the course title, while course URLs were generated from the course key and were not used at all on the marketing site.

Since November 2019, the marketing site uses course URLs, and all course run URLs redirect to the single course URL. When the switch to single course URLs was made, course URL slugs were updated to use the course title instead of the course key, since the course title was more human-readable and SEO-friendly. This has led to collisions between course URLs and course run URLs of courses with similar titles.

Decision

In order to decrease the likelihood of collisions, going forward, all course run URLs will be generated from a combination of the course title and the course run key, eg http://edx.org/course/my-course-course-v1edxcmct12020 instead of http://edx.org/course/my-course

Alternative Approaches Considered

	Doing away with course run URL slugs entirely, since on the marketing site they just redirect to the course URL. We believe that these course run-level URL slugs are still in use by affiliate APIs so it is not possible to deprecate them entirely. Moreover since Drupal is not completely deprecated at this point we want to avoid accidentally sending users to the Drupal page for a course run.

	Use a random number at the end of the URL. This would avoid exposing an internal concept like course run keys, but course keys are already exposed in the LMS, which operates as a marketing site for many Open edX installations. Therefore we do not think there is any major security risk. Also, adding the course run key instead of a random number will be more similar to the current behavior, which will be friendlier to the Open edX community.

Refactor the Curriculum model to relate to the Program model

Status

Accepted (January 2019)

Context

The structure of a Master’s Degree program (as well as other programs,
e.g. MicroMasters) requires loosely that we support programs which may
consist of 0 or more Masters-level courses or 0 or more MicroMasters
programs as part of the program’s curriculum. The structure (or “curriculum”)
of a program may change over time, and we should be able to track different
versions of curricula as they change. Our discovery service should
be able to accurately model the relationship between courses, programs,
and Master’s degrees and the curricula thereof. Consider the following example.

Faber College offers a M.S. in Analytics. Enrollees in this program may
specialize in three different tracks:

	Analytical Tools

	Business Analytics

	Computation Data Analytics

Each of these specializations may require enrollees to complete partially
overlapping, or completely distinct courses and MicroMasters programs to
fulfill the requirement of the specialized degree.

So, from this example, we see that a single degree may offer 1 or more
distinct specializations, and each specialization may require the completion
of different courses or MicroMasters (i.e. other, smaller programs).

Decision

To accurately model data as described above, the following changes to models
in the course_metadata application are proposed:

A Program may have multiple Curricula

We can use the Curriculum model to represent the fact that a Master’s
Degree may contain one or more specializations through which an enrollee
may satisfy the requirements of a degree. Furthermore, several of these
Curricula may be currently active, and several may be inactive. For example,
consider extending the example above as follows:

	The “Analytical Tools” speciailization is retired.

	A new specialization, “Analytics in the Quantum Age” is introduced.

Our Curriculum models should be able to accurately represent this modification
to the MS Analytics Degree. A Curriculum model for “Analytical Tools” should
capture the fact that the specialization is no longer active, and the date
on which it became inactive (after which, presumably, no new enrollee may
participate in that specialization). A Curriculum model for the
“Analytics in the Quantum Age” should be created, with a field to indicate
that the curriculum/specialization is now active and the date on which it
became active.

A Degree may have changing deadlines and costs

The amount of tuition charged, the dates of deadlines, etc. will naturally
change over the lifetime of a Master’s Degree. To support this, we will
update the models that capture this data to capture history (using
django-simple-history. We will also track historical changes of Curricula.

For now, there will be two ways to capture a Program’s included courses

There should be one, and preferably only one way to model the relationship
between courses and programs. After taking actions to implement the decisions
outlined above, there will be two ways: via program curricula, and via
the courses and excluded_course_runs fields of the Program model.
In the future, these fields should be eschewed, and their data migrated into the Curriculum
and associated models. The requirements to support this are beyond the scope of this document.

Decision that we will make later

We don’t currently need to track ideas like prerequisites, required, or
elective courses.

Actions

Relating Curricula to Programs

The current course_metadata design relates Curricula to Degrees via a 1-1 field.
We will change Curricula to relate to Programs via a Foreign Key field, so
that a program may consist of zero or many curricula. Note that specializations
are just one example of a use-case supported by relating Curricula to
Programs in this fashion.

Action 1

Add program as a FK field in the Curriculum model, and point
that FK at the Program model.

Action 2

There are existing Curriculum objects that are tied to existing
Degree objects (roughly 10). We will migrate existing curricula to
reference the program objects associated with the current degrees referenced by the curricula.

Action 3

Remove the existing degree 1-1 field from the Curriculum model.

Action 4

DegreeProgramCurriculum and DegreeCourseCurriculum are the bridge
models that link Curriculum objects to Program and Course models,
respectively. These names should be changed as follows:

	Rename DegreeProgramCurriculum to CurriculumProgramMembership.

	Rename DegreeCourseCurriculum to CurriculumCourseMembership.

Adding Subscription Inclusion toggle to Publisher/Discovery

Status

In progress

Context

Our edX catalog has many subsets, which add distinctions onto which are allowed to be enrolled
in by our enterprise customers.

	Enterprise Catalog: The entirety of the enrollable edX courses**

	Subscription Catalog: A subset of the Enterprise Catalog including self-paced courses from

participating partners. Sometimes referred to as OC Catalog
- B2B Subscription Catalog: A subset of the Subscription Catalog**

** Does exclude some select partners

Currently, our system for subscription tagging is brittle and relies on communication between
two individuals, which leaves us open to a risk multiple issues including:

	Data Integrity: We copy or pull data from multiple different platforms

	Course Key Tagging: Recently published courses are excluded as the process is manual and

is therefore time-gapped
- Source of Truth/SME Ownership: Current process is owned by one (overworked) member of
enterprise and not owners of partner relationships

The full process must be repeated on a weekly basis and whenever a new partner is included
in subscriptions to ensure that the catalog accurately reflects courses that should be included
in the catalog. Therefore, when either of these members are busy or on PTO, we do not have
the most updated catalog for our customers.

Decision

This proposal will change this process so that subscription tagging is done at the Publisher
level. This will enable us to remove the necessity of a manual process by using a binary flag
to tag a subscription course within the metadata. In the future, querying for subscription
courses through a course field will allow us to refine a particular catalog if we choose to
pursue an opportunity like specialized (sub) subscription catalogs. Also, moving away from
Google Sheets gives various stakeholders visibility into which partners participate in the
catalog. This will pave the way for work that can be done in the future to more fully
integrate SFDC with Publisher and truly automate this process.

The types of Partner participation in subscriptions are as follows:

	
	Traditional: All courses/programs in both the OCE and B2B catalog
	Excludes MicroMasters, instructor-led courses, and any specific courses the org wants excluded

	Not Participating: None of the partners courses will be available in the subs catalog

The tagging system will be structured by inheritance from both the organization level and
the course level. If the organization’s inclusion is set to false, none of the courses or
programs from this organization will be included in the catalog. If the org flag is set to true,
partners do have the option of opting out of courses, which will be manually set for every course
they wish to exclude. For inclusion flags for both program and course run, this is a calculated
field, not manually set like organization and course. For programs, if every course in the program
is included in that catalog, we will set the flag to true. Course runs are set to true only if
the parent course is set to true and the course run is not instructor-led.

There are some existing organizations with unique customizations. Because of the value-add of
these partner’s courses, we have allowed places to exclude their courses from
the B2B catalog. However, these are the exception and not the rule, and we intend not to
generally allow or advertise these customization options for future partners. We will be
filtering/manually excluding unique partner courses through a downstream query on a case by
case basis.

Ranking in Algolia by Start Date

Status

Accepted (07/13/2022)

Context

While most Executive Education courses on edX are currently running, some have future start dates. Not all future
courses are created equal, however. Some are relatively far off - we’re defining this as more than 45 days in the
future - while others will start soon.

When a course is starting more than 45 days in the future, we need a way to de-emphasize it in search.

Decision

Algolia provides a custom ranking feature. We will index a boolean field (e.g. far_off_start_date) that returns
True if the course starts over 45 days in the future. This field will be set as a descending custom ranking
attribute in Algolia, so that these courses can be de-prioritized.

We can create a replica index in order to test these changes without affecting the search results on production.

Consequences

	This data will only be available in Algolia. However, there are no plans to use it elsewhere.

	Executive Education courses have a different source of truth for start date than OCM courses
(additional_metadata.start_date vs. advertised_course_run.start, respectively). We will have to consider this
when implementing.

References

	Custom Ranking in Algolia [https://www.algolia.com/doc/guides/managing-results/must-do/custom-ranking/#custom-ranking]

	Understanding Replicas [https://www.algolia.com/doc/guides/managing-results/refine-results/sorting/in-depth/replicas/]

Skill Tagging of Programs

Status

Accepted

Context

Programs in course-discovery do not have a direct way to getting tagged with Taxonomy skills. Each program has a set
of associated courses. Most of the courses have a list of skills attached to them. The course skills information is present in taxonomy-connector models [https://github.com/openedx/taxonomy-connector/blob/09bc066ae66ed4bea73f70811dedc0853e2fe077/taxonomy/models.py#L102]. By aggregating the skills linked to the courses, the skills of a program can be formulated.
However, with the import of external programs (degrees) that
do not have associated courses in discovery, the course skills aggregation mechanism can not be utilized for listing program skills.
With no relevant skills available, the external programs can not be used effectively in Algolia search.

Decision

A new model called ProgramSkill will be added in taxonomy-connector [https://github.com/openedx/taxonomy-connector/blob/09bc066ae66ed4bea73f70811dedc0853e2fe077/taxonomy/models.py], using the same design as CourseSkill model.
This model will be responsible for containing the information of skills associated with a Program. The tagging process
for new programs will work as follows:

	In discovery, when a program publishes for the first time or the contents of “overview” field change, emit a signal indicating the program skills must be updated.

	In taxonomy-connector, add a signal handler [https://github.com/openedx/taxonomy-connector/tree/09bc066ae66ed4bea73f70811dedc0853e2fe077/taxonomy/signals] that is listening to the event published by course-discovery.

	Upon receiving the signal, get Program information from Discovery and send “overview” data field to EMSI using EMSI API.

	With a successful EMSI API call, create or update the skill information for Program in taxonomy app.

The above mentioned process can work for any type of Program (with or without associated courses). To back-populate the Programs
that are already present in the Catalog, a management command that is performing the above steps in a similar capacity would be needed.

Consequences

	The program skill information would need to be indexed in Algolia.

	For the cases where the associated skill(s) for a program are not correct or do not meet the quality, there should be a mechanism to remove or blacklist the unwanted skills for a Program.

	If the program has associated courses, the course skills aggregation will be given preference for the determination of Program skills.

15. Use Event Bus to Replace Refresh Course Metadata

Status

Accepted

Context

In an effort to update and progress our overall system architecture, we have made the decision to use an event bus [https://open-edx-proposals.readthedocs.io/en/latest/architectural-decisions/oep-0052-arch-event-bus-architecture.html] for communicating between services. Discovery
is a service that synchronizes data between itself and several other services, relying on a management command run on Jenkins, refresh_course_metadata, that makes
REST api requests to both ecommerce and LMS. This work is being done by a non-owning team of discovery to prove out a use case for the event bus by utilizing an
already existing pattern.

Decision

We will be duplicating an existing refresh_course_metadata workflow with a event that gets sent to and received from the event bus, replicating course information
published in Studio. While we would like to see all of refresh_course_metadata replaced with events, that work is outside the scope of this ADR.

Consequences

	Changes in Studio will be reflected on Discovery in the Discovery database in a much more timely manner instead of being updated once a day with the run of RCM.

	The current implementation of this work with event bus will not replace, merely duplicate, the work done by refresh_course_metadata. We are not removing the
RCM course update code at this time, and it will act as a backstop for the event workflow until we are certain of event bus stability. Future work to remove
refresh_course_metadata will have to be more careful without the backstop.

	This may be a small part of a larger effort to replace all of RCM with events, but this ADR only covers the Studio use case.

	We may see race conditions between events, and we will be relying on workarounds (making a new change to issue a new event) or another RCM run to fix the issue.

	An event consumer will be running on new infrastructure and will have to be maintained separately from the Discovery application deployment. See the Managing Kafka Consumers ADR [https://github.com/openedx/event-bus-kafka/blob/main/docs/decisions/0003-managing-kafka-consumers.rst]
for more details.

	The event consumer will convert any instances of an event it receives into a Django signal [https://github.com/openedx/openedx-events/blob/7620775586f2746c77ffb391162094de901fb4b0/openedx_events/content_authoring/signals.py#L18] that will indicate that course data has been updated.
While we are implementing only one listener for this signal at the moment, other parts of the system could make use of it in the future.

16. Create new models in course-discovery for Learner Pathways

Status

Accepted (October 2021)

Context

The structure of a Learner Pathway allows for programs, courses, and course
blocks to be arranged in a semi-sequential collection of steps to be completed
by a learner in pursuit of a specific goal for which the pathway has been
designed. e.g. Maximizing growth in a specific skill.

Unlike programs or curricula, Learner Pathways are not primarily concerned
with price bundling or credentials. Instead, Learner Pathways are meant to be
more flexible, not coupling too closely with their own content. In fact, it is
expected that Learner Pathways be periodically updated as newer, more relevant
content becomes available.

Learner Pathways are structured both vertically and horizontally. Their vertical
structure consists of 1 or more steps to be completed. It is implied that the
steps should be completed in order, but this is not strictly enforced. However,
we may decide later to enforce requirements (potentially leveraging the edX
milestone service). A Learner Pathway’s horizontal structure consists of 1 or
more content options (electives) presented for a given step. For steps like,
Learners must complete a minimum number of electives. e.g. Complete 2 of the
following 3 courses. By structuring Learner Pathways in this way, we accomplish
the creation of a hierarchy of content knowledge that the Learner Pathway
builds, while at the same time, affording learners some freedom of choice.

Decision

To accurately model data as described above, a new application learner_pathway
will be created with its own API and models as described here:

The LearnerPathway model

The LearnerPathway model contains all the necessary data and sub-models required
to fully describe a Learner Pathway. In addition to the Learner Pathway’s metadata
(title, id, etc.), this model also contains an ordered set of LearnerPathwayStep
objects. These objects describe the vertical structure of the Learner Pathway that
learners must traverse towards completion.

This model also implements methods to be used to return data aggregated from the
pathway’s composite steps and nodes. e.g. The pathway can return an estimated time
of completion by iterating through each step and calling each node’s
get_estimated_time() method and aggregating the data.

The LearnerPathwayStep model

The LearnerPathwayStep model represents a step in the vertical structure of a
pathway. Each step contains 1 or more nodes to be completed before moving on to
the next step. If multiple nodes exist within a step, the step will use its
minimum_to_complete data field to indicate how many nodes must be completed.

Each step has a 1-1 relationship with a pathway. A step in one pathway may be
identical in form to a step in another pathway, but each pathway maintains its own
separate set of steps and nodes.

Each step implements a method to calculate the minimum and maximum estimated time
to completion of itself by iterating through each node in the step and calling its
get_estimated_time() method, and aggregating the minimum and maximum values.

The LearnerPathwayNode model

The LearnerPathwayNode model is an abstract model that represents a piece of content.
This content will typically be a course, but may also be a program. In some cases,
nodes may be a block of course content, such as a video.

Using an abstract model in this way allows LearnerPathwayStep objects to be agnostic
of the specific types of content they contain.

Node objects declare abstract methods to return their content’s estimated time to
completion, and the effort level involved. This data can be aggregated for each step,
and in turn, for the pathway in its entirety.

The LearnerPathwayCourse model

The LearnerPathwayCourse model represents a single course. Each LearnerPathwayCourse
node relates to a specific Course. Through this relationship, the node can access
information about the course, providing it to the pathway to which the node belongs.
This information includes, but is not limited to: title, description, subjects, and
prerequisites. Also, through the Course’s related CourseRun list, we have access
to the estimated time to completion, estimated effort, etc.

The LearnerPathwayProgram model

The LearnerPathwayProgram model represents a single program. This model is very
similar to the LearnerPathwayCourse model, except that it relates to a Program
object, rather than to a Course object. Through this relationship, the node can access
information about the program, providing it to the pathway to which the node belongs.
This information includes, but is not limited to: title, subtitle, marketing hook,
overview, total hours of effort, weeks to complete, etc.

In addition to metadata about the program itself, we can use the Program object’s
related Course list to retrieve metadata about any of the courses belonging to the
program.

The LearnerPathwayBlock model

The LearnerPathwayBlock model represents a single block of content from a course.
Each model object relates to a specific Course, and to a specific block within that
course (identified by the block ID). This allows pathway curators the flexibility
to prescribe certain content without requiring the entire course.

The Learner Pathway API

The Learner Pathway API is made available from course-discovery and can be used
by an MFE to retrieve and store Learner Pathways.

Learner Pathways are loosely coupled to learners and their progress

Learner Pathways do not relate directly to learners, as doing so would needlessly
complicate their structure and maintenance. Instead, we plan to add a new model
to the LMS to provide the status of a learner’s progress through a pathway. This
progress model can be related to the learner, and retrieved by an MFE through an
API method. By combining the progress model with a pathway, we can easily
determine what pathway content the learner has completed vs. what remains.

Learner Pathways are loosely coupled to enterprises

Though this feature is developed by an Enterprise team, it is not necessarily
an Enterprise exclusive feature. The design is intended to allow pathways to be
used by both B2B and B2C.

Learner Pathways are capable of being scoped. Most will be available to all learners,
but some may be scoped to one or more enterprises. Potentially, pathways could also
be scoped to a specific set of learners.

Why not reuse Programs?

Initially, our Program model was chosen as a potential framework on which we could
build Learner Pathways. After several discussions with the Programs team, we
decided against that because:
1. Programs was built primarily for price bundling, and as such is closely tied to
CourseEntitlements.
2. Programs can only contain courses, and we wanted more flexibility. e.g. multiple
programs in a pathway, course blocks.
3. We didn’t want to break Programs, or at least to not further complicate it.
4. It’s better to have two things doing their own thing, rather than one thing
trying to do everything.

Decision that we will make later

We don’t currently enforce a rigid set of requirements or prerequisites. Pathways
will initially be built manually, with the expectation that the curators will
choose the sequence of content based on their knowledge of the course content.

We may later implement algorithms to automatically generate pathways. To do so
may require that we use or create tools to help enforce requirements. The edX
milestones service may be useful for this purpose.

17. Internal Users Access Restriction for Publisher consumed APIs

Status

Accepted (November 2022)

Context

Any internal or staff user visiting the Publisher Micro Frontend (MFE) has capability to view, create, or edit the course, course run, and staff information. Publisher being an MFE gets all the information from Catalog service, Discovery.
The APIs used by Publisher to view, create, and edit the course, course run, and staff information have certain permissions in place. However, those permissions only apply to Course Editors. The editors are not staff users.
The administrator checks are loose compared to course editor permissions. By default, any internal user has permission for data modifications through APIs.

Why is this important? Publisher is an interface to author marketing information for courses. Aside from the marketing-only information, there are sensitive and risk-prone data pieces such as price, schedule dates, etc. Any unintentional edits to these fields by an internal user
carry huge implications for marketing and financial data of the course’s organization and for the platform as a whole. Therefore, it is essential to have access checks for internal users on APIs used by Publisher.

Decision

The access checks will be implemented using role based authorization. With the help of edx-rbac [https://github.com/openedx/edx-rbac], the following actions will be performed:

	A new feature-based role, PUBLISHER_EDITOR, will be added in Discovery. There will not be any system-wide role because the access restrictions are focused only for Discovery and Publisher.

	The role will be assigned to internal users within Discovery. The role assignment will be accessible via an exposed endpoint. The role assignment will contain other information, such as the assignment date, the reason for giving access, access history, etc.

	Publisher will make an additional API call to get the users’ assigned role. Based upon the assignment, the behavior of publisher will change.

Consequences

	This change will not impact Project Coordinators, Course Editors, and Legal users. They will be provided appropriate access upon the implementation.

	The staff or internal users will have read-only access by default. To be able to create or edit course and course runs, they would need the appropriate role.

	This behavior will be toggleable via settings. This will enable open edX community to keep using Discovery and Publisher the way they are using if they do not require role-based authorization.

Alternates Considered

One option was to create a Django User group, assign the users the new group, and make decisions based on the group. This approach, however, falls short in adding metadata of the role assignment.

 _static/minus.png

_static/plus.png

_static/course_discovery_types.png
Course

p

CourseEntitlement

ID
type

1D
course
mode

price

SeatType

ID
name

slug

CourseRun Seat

ID m ID

course course_run
type type

price

L

J

_images/course_discovery_types.png
Course

p

CourseEntitlement

ID
type

1D
course
mode

price

SeatType

ID
name

slug

CourseRun Seat

ID m ID

course course_run
type type

price

L

J

_static/file.png

nav.xhtml

 Table of Contents

 		
 edX Discovery Service

 		
 Introduction

 		
 Courses and Course Runs

 		
 Catalogs

 		
 Programs

 		
 Data Loading

 		
 Search

 		
 API

 		
 Creating/Accessing the Discovery Service Django Admin

 		
 Quickstart

 		
 Devstack

 		
 Data Loaders

 		
 Search Indexing

 		
 Tests

 		
 Advanced Usage

 		
 Elasticsearch

 		
 Index Aliasing

 		
 Boosting

 		
 Querying Elasticsearch

 		
 Extensions

 		
 Catalogs

 		
 Permissions

 		
 Administration

 		
 Waffle

 		
 Internationalization

 		
 Updating Translated Strings

 		
 OAuth2

 		
 Publisher

